Q: Find the volume of the solid whose base is inclosed by the parabola $y=3-2 x^{2}$ and whose crosssections are squares perpendicular to the y-axis.

A: We divide the solid into an infinite number of infinitessimally thin square slices perpendicular to the y-axis. Each slice has volume
$\mathrm{d} V=S^{2} \mathrm{~d} y$
where S is the side length.
We can see from the figure that for a given point (x, y) on the parabola, the corresponding side length will be $S=2 x$. Solving $y=3-2 x^{2}$ for x gives
$x=\sqrt{\frac{3}{2}-\frac{y}{2}}$
so that
$S=2 \sqrt{\frac{3}{2}-\frac{y}{2}}$ and

$\mathrm{d} V=4\left(\frac{3}{2}-\frac{y}{2}\right) \mathrm{d} y=(6-2 y) \mathrm{d} y$
Integrating these volume elements from the lowest to highest y-values gives
$V=\int_{0}^{3}(6-2 y) \mathrm{d} y=\left[6 y-y^{2}\right]_{0}^{3}=9$

